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Abstract

Implementation of state variable-based viscoplasticity models is

made in a general purpose finite element code for structural appli-

cations of metals deformed at elevated temperature. Two consti-

tutive models, i.e. Walker's and Robinson's models, are studied in

conjunction with two implicit integration methods: the trapezoidal

rule with Newton-Raphson iterations and an asymptotic integra-

tion algorithm. A comparison is made between the two integration

methods, and the latter method appears to be computationally more

appealing in terms of numerical accuracy and CPU time. However,

in order to make the asymptotic algorithm robust, it is necessary

to include a self adaptive scheme with subincremental step control

and error checking of the Jacobian matrix at the integration points.

Three examples are given to illustrate the numerical aspects of the

integration methods tested.





1 Introduction

In the design of structural components, such as jet engines or nuclear pri-

mary vessels, inelastic deformations and ratchetting effects under thermo-

mechanical cyclings are of major concern in predicting the service lifes of

such structures. To reliably predict the mechanical response of metals or

composite materials at elevated temperatures, it appears that constitutive

relations in the framework of a unified viscoplasticity theory are most ef-

fective. Indeed, such constitutive models can represent typical deformation

phenomena, e.g. creep-plasticlty interactions, cyclic strain softening or hard-

ening, and thermal ratchetting, none of which can be properly described by

the classical creep and plasticity theories. Although the viscoplastic theories

are very useful in predicting the deformation behavior of high-temperature

materials, they present considerable difficulties when the associated differen-

tial equations are to be solved by numerical means. This is directly related
to the "stiff" nature of the nonlinear differential equations, for which a small

change of a state variable may result in large changes of others.

In the literature, a great deal of study on numerical methods for integrat-

ing viscoplastic rate equations in relation to the solution of boundary value

problems has been reported [1-3]. Several numerical schemes have proven

to be quite effective [4]. In general terms, there are one-step methods verse

multi-step methods, such as those due to Gear [5]. It has been argued that

although the multi-step methods generally give better solution accuracy as

well as reliability, they are not suitable for large-scale finite element analysis

because of their excessive demand in computer storage. Among the one-step

integration schemes, two classes of numerical methods can be identified: ex-

plicit and implicit schemes. Considerable discussion on the advantages and

disadvantages of these two methods is available, e.g. [1,2]. No attempt wilt

be made in the present paper to duplicate What is already available in the

literature. Nevertheless, two observations may be offered: 1) the use of an

explicit scheme in conjunction with self-adaptive time stepping can be very

effective, however the solution accuracy may vary with the accuracy of error

check embeded in the method, and 2) an implicit scheme together with iter-

ations is generally more reliable, but requires intensive computational effort.

More recently, an asymptotic integration algorithm was proposed by

Walker, et al. [6-8], where the constitutive rate equations are cast into an in-

tegral form. The integrands of solution are then expanded into Taylor series



in a time interval, say t G It,, t,, + At], so that_heresultlng equations can

be integrated term by term. When the series expansion is done about the

upper limit [t, + At], it gives an implidt iterative scheme and the numerical

solution is unconditionally stable provided that the corresponding solution

is exponentially decaying [7]. One apparent advantage of this method is

that the numerical scheme involves the solution of only a 3 x 3 matrix of

equations as opposed to a 13 x 13 (for 21) problems) or a 19 x 19 (for 3D

problems) matrix of equations in the case of other implicit schemes, such as

the trapezoidal rule with Newton-Raphson iterations [3,9]. From a computa-

tion_standpo!nt_the a_ymptotic integration algorithm appears to be quite

appealing. Nevertheless, the method is relatively new and _thas n0t been

tested on various viscop]astic models. One of the objectives of this paper

is to conduct a comparative study between two, one-step, implicit methods,

i.e. the asymptotic integration method and the trapezoidal method with

Newton-Raphson iterations. The numerical schemes will be tested on two

constitutive theories: Walker's [10] and Robinson's models [11] for isotropic

materials. Moreover, another objective of the present paper is to show how

the viscoplastic models and the associated integration schemes can be conve-

nientiy impiemented into a fi_te element codefor Structural snalysis: Three

numerical examples are included in this paper.

2 Constitutive Models

The present paper is concerned with the thermo-mechanical behavior of poly-

crystalline metals and similar alloys deformed at elevated temperatures. In

this connection, inelastic phenomena such as creep-plasticity interactions,

cyclic strain-hardening or softening, and thermal ratchetting are of primary

interest in a structural analysis. Although a number of viscoplasticity theo-

ries are available to represent the aforementioned phenomena, see e.g. [12],

our attention is focused on a class of state-variable based viscoplastic models,

that are based on a phenomenological approach, as discussed by Freed and

Chaboche [13].

In the present study, the material is assumed to be initially homogeneous

and isotropic. Furthermore, the analysis is limited to small deformations.

Referring to a rectangular Cartesian coordinate system zl, i= 1,2,3, the total

strain rate at a material point in a deformable body is given by



with the incompressibility condition in inelastic strains

(i)

tr(i_)- 0 (2)

The relation between the elastic strain and the Cauchy stress rates is

given by the Hooke's law:

= D: (_ - _r - _) (3)

where _ is the total strain, ff is the elastic part of the strain, :g is the matrix

of thermal coefficients, T is the temperature, _ is the Cauchy stress and D

is the elastic stiffness matrix.

To represent the inelastic process of a viscoplastlc material, two sets of

laws are being used: 1) a flow law which governs the rate of inelastic strain

as a function of the current deformation state of a body, and 2) s set of

evolutional equations that defines the rate of change in the internal state
variables. The framework of these laws are outlined as below,
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Flow Law:

_= f(_)_ (4)

where f represents a plastic scalar function, _ is the effective deviatoric
stress and a is the back stress.

Evolution Equations:

Evolution equations describe the change of internal state during the de-

formation process. In genera], three types of state variables can be iden-

tified: back stress, drag strengt h and yidd st reng_th [9,1_0_]:_At present, we

shall consider viscoplastic rnodels that do not have an explicit yiejd surface.

Moreover, the change of state variables is described by two competing mech-

anisms: hardening vs. recovery processes (including both dynamic and static

recovery). With the aforementioned considerations in mind, evolution equa-

tions may be expressed for the back stress and drag strength, respectively,

in the form:

= _ot _- Ro_ (5)

k = H_lldlt_- R_k (6)

where a designates the back stress, a tensor, k is the drag strength, a scalr

quantity, H represents a hardening function and R is a recovery function.

For later discussion, both (5) and (6) may be combined into one repre-

sentative form:

fi = H. :_I _ R. : 9 (7)

where _ = (a, k).

In addition, we define the following quantities: the deviatoric components

of stress are

s= _- _tr(_) (8)
The second invariants associated with the effective and the back stresses,

respectively, are:



1

j_ = _(_: _) (9)
1

The material is assumed to behave thermo-elastically in hydrostatic response,

2
3aT] (ix)

where _ is the Lame constant, # is the shear modulus and c_ is the coe_cient

of thermal expansion.

For computational purposes, we have selected two specific viscoplastic

models for finite element implementation. These are Walker's [9] and Robin-

son's models [10] for isotropic materials. The basic difference between the two

models is their mathematical form. Walker's model prescibes fairly smooth

behavior in the state space. On the other hand, Robinson's equations contain

mathematical discontinuities in various regions of state space which require

special care in numerical integration. Both models are briefly summarized

below.

2.1 Walker's Model

Flow law:

with

Evolution equations:

((t) = fp (12)

_(t) = (nl + n2)__- [a(t)- nl_'(t)] [(ns+ n,e-"_R)R+ n.(_I2) '_-_] (14)

k(t)= n,h-_s._[k(t) - ko]-n.[k(t) - _1" (1_)



In the above,/_ is the magnitude of inelastic strain rate defined by:

and the effective stress is

3

E= _'-a (17)

where n, nl, n2, ns, n4, ns, ne ,nT, p, ]Co are material constants, which are

defined in [10].

2.2 Rpb_nson's Modei, ii_.__.:_.= ::::_ _i__,

In order Jto capture very different viscop!a..stic resP?nses of a_ material,,=_. :under

different loading paths, several discontinuous functions were introduced in

Robinson's model, which was derived from an assumed plastic potential.

This model constitutes an inelastic flow law and one evolution equation as

follows.

i.

Flow law:

where

_I _ P(Z)¢F(T) < F >" ]E (18)
~ 2rkTv/-_2 ~

_--S-a (19)
r,I *_

In the above, P is a spline function defined in the stress or strain space [11],

which provides a smooth transition from one set of material equations to

another; F and G are material functions, also given in [11].

Evolution equation:

Ho ._ R,¢c(T) G(,,__) a (20)



where kr,n,r,m,_,R_ and Ha are material constants to be determined ex-

perimentally and _(T) is a function of the temperature to account for tem-

perature dependence of material properties [11].

3 Numerical Procedures

With the constitutive equations outlined in the preceeding section, one may

proceed to the structural analysis for viscoplastic materials using the finite

element method. In this context, two solution approaches are possible: the

initial strain method and the tangent stiffness method. In the former ap-

proach, the viscoplastic deformations are treated as the initial strains on the

right hand side of the incremental equilibrium equations. The major advan-

tage of this method is that the global stiffness matrix remains constant under

isothermal condition but the convergence rate of the corresponding iterative

solution is at best linear. As an alternative, it is possible to derive the tan-

gent material stiffness for a viscoplastic model [12,14,15] so that a tangent

stiffness method can be pursued. In this context, the global stiffness matrix

has to be reformed for each loading increment, but the iterative solution is

quadratic in terms of its convergence rate. Thei choice between these two

methods is largely hinged upon the coding convenience. In our analysis, we

have chosen the initial strain method.

The finite element viscoplastic analysis generally involves two levels of

numerical computations: global equilibrium and local constitutive calcula-

tions. At the global (or structural) level, the targeted solution time is divided

into a number of time intervals and the incremental equilibrium equations

are solved for each time step in succession. At the local level (or material

point), the constitutive rate equations are integrated by a numerical scheme

where the stress and strain rates are converted into incremental quantities.

As a result, the rate form of the constitutive equations in (3) for a typical

time step t' 6 [t, t + At] is written as

AZ = D :(A_-- h_ z- sAT)

where the vector of incremental stresses are obtained from

(21)

/.t+At

= ], (22)



The expressions of A e , A_ z and AT follow similar definitions.

The main objective of our analysis is to integrate the rate equations (1) -

(4) and (7) in an efficient way. Due to the "stiff" nature and the nonlinearity

of vlscoplastic rate equations, the solution accuracy of A e I is very sensitive

to the values of the state variables evaluated at the material sampling points.

Therefore, an accurate and reliable numerical scheme is essential to integrate

the aforementioned rate equations. ...... i.......................

For the sake of brevity, we write (1)-(4) and (7) in the condensed form

=!(.y,t) (23)
The above equation represents a system of nonlinear, first-order, ordinary

differential equations, where y = (ff, a,_X,k). For a three-dimensional prob-
lem, y represents a vector of 19-components, i.e. 62Cauchy stresses, 6 back

stresses, 6 inelastic strains and 1 drag strength. For a 2D problem, y contains

13 components.

A number of numerical integration schemes are available to integrate (23).

The choice of a particular scheme is dominated by three considerations: 1)

suitability for finite element implementation, 2) solution accuracy and relia-

bility and 3) computational cost. For instance, Gear's multl-step methods [5]

are known to be very effective for integrating nonlinear differential equations

such as (23 i for viscoplasfic materials under homogeneous deformation. How-

ever, these methods are not particular suitable for large-scale finite element

computations for two reasons: 1) the methods require extensive central mem-

ory and 2) a special start-up procedure is needed. In view of this, one-step

integration methods are much more desirable.

In the context of one-step integration methods, two classes of algorithms

can be identified: explicit and implidt algorithms. The explicit algorithms

(although less computation effort is required) are not very reliable, especially

in dealing with thermo-mechanical cyclic loadings. For added solution ac-

curacy, we have chosen the implicit algorithms. In particular, we select the

trapezoidM rule with Newton-Raphson iterations and an asymptotic algo-

rithm proposed by Walker [6,7]. Both algorithms are briefly outlined in the

following subsections.



3.1 Implicit Trapezoidal Rule

We consider a typical time interval r E [t,t + At]. The trapezoidal rule can

be easily obtained by using Taylor series expansion of the rates _ between

succesive iterations at time points t and t + At. For discussion purposes, we

introduce the foUowing notations: y,, =/t(t),]/_+1 = y(t + At) correspond-
ing to the i-th iteration. Thus, the trapezoidal rule with Newton-Raphson

iterations prescribes [3,9,18,19]:

At
I •Ay( )-Yay J -

with the recursive relationship

At [ _LdO ] (24)

 o+1 =y.+l + (25)
where (_f/cgy)' is a Jacoblan matrix evaluated at the time t + At for the i-th

iteration. The size of the Jacobian matrix is: 13 x 13 for 2D problems, and

19 x 19 for 3D problems.

It is known that stability of this algorithm is assured by its implicit-

ness[3,9]. However, some comments are needed on the uniqueness of the

solution scheme. In order to assure the uniqueness of Ay in (24), it is nec-

essary to impose a condition that the pth norm of the Jacobian matrix must

always be less than one. p may be any norm as long as it satisfies the basic

matrix relationships [3,5,18,19].

We note again that (24) represents a system of unsymmetric simultaneous

equations which have to be solved at every integration point of each finite

element. For a sizable finite element mesh (say 1000 elements) in three-

dimensions, the computation efforts required to solve these equations can be

quite intensive.

3.2 Uniformly Valid Asymptotic Algorithm

The basic idea behind the algorithm proposed by Walker [6,7] is to trans-

form the differential equations into a set of integral equations, which can

then be solved approximately using a recursive relationship. In order to

evaluate the resulting integral expression, an asymptotic expansion of the

related integrand is performed about the upper limit of the time interval

[t,t + At], resulting in an implicit integration scheme. The main advantage



of this method is that only a 2 x 2 (or for certain viscoplastic models, 3 x 3)

matrix of equations need to be solved during the iteration process.

After some manipulations, the viscoplastic rate equations, i.e. (1)-(4) and

(7), can be written in the following symbolic form [6,7]

_) + X: y-- H: _ (26)

where X and H are diagonal matrices and each contains only 2 or 3 distinct

entries. The matrix H may be a function of time [10]. Within a typical time

step [t,t + At], one can obtain the snaiytical solution of the above equation,

i.e.

where

ft+_t , '
_(t + At) = _(t)e -''x + J_=t e- f; xa"H(_C_({)d{ (27)

/,x = x(t + at) - x(t) ,_x:. at (28)

Here _(t) is the initial value of the appropriate stresses and strains defined

at the begining of the current step. The function 9 is defined for a specific

material and is, in general, a function of the current state and the appropriate

rates:

We denote the integral expression on the right hand side of (27) by!(At )

so that

y(t + At) = e-ax -_(t) + !(At) (29)

and

&

/(At) -- e-[X(t+"t)-x(t)lH({)'_({)d_
(30)

,t_=t

It is seen from the above, in order to solve for y(t + At) the integral/(At)

has to be evaluated, and the entries in X and in 9 still remain unknown.

Approximation of Integral:

If the solution is exponentially decaying, it is possible to approximate the

integrand in (30) by an infinite series expression

10



(31)
Thus, by retaining the first two powers of "z", we obtain the following ap-

proximate expression for the i -th component of the integral

1 -- e -'_i&t e_x_t _ ]_¢-Yria,X_At
/_(At) = H_AAg, EClAt + it_,(At)' 2_At ,no sum overi

(32)

where the derivatives of g are approximated using the known values of this

vector at the begining and at the end of the current step:

g, ,_ g_(t + At)- g_(t) (33)
At

Equation (32) is similar to the one derived in [6-8]. Here it incorporates the

time dependency of the matrix H [10].

With the numericM equations outIined in the general form, it is useful to

list the specific relations for the physical quantities, i.e. back stress, effective
stress and inelastic strain.

Back stress:

a(t + At) = ¢=p-"x'_(t) + x'(at) (34)

Effective stress:

_(t + _t) = e=p-"x__(t) + _'_(At) (35)

Inelastic str_n:

_' = _(t + At) - _(t + nt) +z(t + At)
" 2#

where e is the deviatoric strain tensor.

(36)

EvMuation of Matrix AX:

11



The entries of diagonal matrix AX appeared in (26) are related to the

second invarlants of inelastic deformations, which are generally unknown.

These quantities are determined by an iterative process outlined as foLlows.

First of all, we recognize that the matrix AX must be semipositive, i.e.

AX >__0. (37)

Since AX is a diagonal matrix, for convenience it can be treated as an equiv-

Ment vector in its diagonal form. From (7), the general form of AX may be

written as

AX-- R[9(/+ At)]At (38)

This vector equation defines an implicit nonlinear system which can be

solved by an iterative procedure. To this end, we define a residual vectorial

function F

F = AX- R(y)A_ (39)

The above equation is solved by a Newton-Raphson iterativeprocedure for

the incremental change of AX, which isdenoted by• AAX. Invoking Taylor

series expansion and ignoring higher order terms, we find

_R 3

)(0j.AAX = -F (0 (40)[I- (a-h--

where AAX represents an error vector between two successive iterations.

The updated value for AX is thus given by

AX (i+1) = AX (0 + AAX (41)

Iterations are terminated when the following convergence criterion is satisfied

IIAAXII2_< (42)
liaXli2

where _ is a tolerance limit and ]]. ]]2 designates a Euclidean norm. It is

noted again that (40) represents a system of 2 x 2 simultaneous equations re-

gardless whether for a two-dimensional or three-dimensional problems. This

is obviously a major advantage of the asymptotic integration algorithm over

12



the trapezoidal rule where one has to solve a system of 19 × 19 simultaneous

equations for every iteration.

In (40), the coef_cient matrix, denoted by J = _ represents a 2 x 28AX

Jacobian matrix, which may be derived analytically or defined by a numer-

ical means. To improve computational efficiency of the procedure, we have

obtained the analytical expressions for both Walker's and Robinson's models.

3.3 Time Step Control

As mentioned in the previous susections, numerical stability of trapezoidal

and asymptotic integration algorithms is assured by the fact that both pro-

cedures are implidt methods. However, special care must be given to insure

solution uniqueness, or the invertibility of equation (40). To this end, a

Lipschitz condition [3,5,18] is employed. The Lipschitz number is defined by:

L = sup IJJ(_)llp (43)
_EAt

where II lip is the p,h order norm.

Lipschitz theorem states that if 0 __ L <, 1 then there exists a unique

solution and the iterates AX i will converge afte_r sufficient number of ita-

rations is performed. This theorem defines a convergence condition for the

Jacobian matrix, i.e.

I ,(J)l < IIJIl < 1 (44)

where _i is the i-th eigenv_lue of J. The requirement in (44) insures the

existence of the inverse of (I - J). The particular p-norm is at the discretion

of the user. Fulfilling this condition, the algorithm is unconditionally stable

and will yield a unique solution.

Our time step control makes use of the Lipsckitz number. That is, dur-

ing the analysis the magnitude of the Jacobian matrix is being monitored.

Whenever its norm exceedes an allowable limit, the global time step is subdi-

vided by the calculated Lipschitz number. Thus, the subincrement step size

is given by

At

Ar - Z(t) (45)

13



where L(t) is the current Lipschitz number and At is the global time step.

4 Computer Implementation_/...

The viscoplastic models discussed in the previous sections have been written

in the form of a material module for finite element computations. Although

the module was written for implementation into a specific code, i.e. NFAP

[16], it is adaptable to other general purpose finite element codeswith mini-

mum effort. ...... ..........

Basically, the material module constitutes two main branches: integra-

tion methods and material functions. In the integration branch, one has

the option to choose explicit schemes, e.g. forward Euler or Runge-Kutta

methods, or implicit schemes, such as the trapezoidal rule or the asymptotic

integration method. In the material function branch, one may select Walker

[10], Robinson [11] or any other viscoplastic model. The coding is transpar-

ent enough so that user may easily add another integration method and/or

viscoplastic model.

The material data are calculated at all integration (or Gauss) points of

all elements: that is, all continuum elements (2D, 3D, plate or shell ele-

ment) share the same material module. The material module is called by the

main program in three stages for each global time step: 1) element stiffness

calculation, 2) calculation of the internal forces for global equilibrium check

(iterations), and 3) stress and strain output. Data transfer between the main

program and the material module is achieved through the subroutine argu-

ment list and common blocks. In entering the material module, the following

data are defined: e., _/, a.,kn, ff,_, Tn, t., At, and e,_+a, Tn+a, where ()n

indicates quantity at time t; ( )n+a, quantity at time [t 4- At]. When calcula-

tions are done in the material subroutines, the material stiffness matrix and

the updated inelastic strains, stresses and state variables corresponding to

the current deformation are passed onto the main program. A skeletal block

diagram for the material module outlining the major calculation controls are

shown in figi(i) and specific functions of each control routine are described

below.

1. Main driver - Updates the solution vector y, forms the material stiffness

14



matrix D(t + At), and if necessary, adjusts the global time increment

At to obtain the local subincrement Ar at each Gauss point.

The main driver calls upon two control routines: numerical algorithm

control and subincremental time control.

2. Numerical algorithm control- At each time step, it selects the appropri-

ate algorithm optioned by the analyst, and computes the corresponding

iteration vector Y_+I with a suitable convergence test.

3. Material function control - Calculates the inelastic strain and associated

evolution equations for a specific viscoplastic model. If the asymptotic

algorithm is employed, it evaluates the coefficient matrices X, H and

the vector g defined in (26) for either Walker's or Robinson's model.

,

,

Jacobian matrix control - For implicit algorithms, it evaluates the Ja-

cabian matrix of the material model and checks a criterion for solution

convergence and invertibility of the matrix equations involved.

Subincremental time control - Using the criterion defined in the previ-

ous section, it determines whether or not the global time step At is to

be divided into sublncrements: A_- = At�L, where L is the Lipschitz

number, see (45).

5 Numerical Examples

Three sample problems are included to demonstrate the utility of numerical

algorithms implemented for finite element applications of viscoplastic struc-

tures. Although the constitutive equations incorporated in the program can

be utilized for any general three-dimensional state of stress, the problems

considered here are merely two-dimensional. In our analysis, some numerical

difficulty was encountered due to the mathematical discontinuity existed in

Robinson's constitutive equations and ways to alleviate the aforementioned

difficulty are discussed. Further, a comparison of the numerical performance,

in terms of CPU time and solution accuracy, between the trapezoidal rule

and aymptotic algorithm is also included in the present study.

15



5.1 A Thick Walled Cylinder

The firstexample is a thick walled cylinder subjected to a time dependent

internalpressure,p(t),which undergoes a fullloading- unloading cycle,The

finiteelement model contains 12 axi-symmetric elements and is shown in

fig.(2)along with the input pressure function.The material for the cylinder

isrepresented by Walker's isotropicmodel, which does no t have any diconfi-

nuitiesin itsmathematical formulation. The main objective of solving this

problem is to verifythe coding for the various numerical integrationproce-

dures considered,

Material constants for thisproblem are [6]:

T = 1600F E = 18.6.103 Ksi

p =3. n --5.i28

n3 = 5.108 n4 = 672.6

n7 -----8.98. 10 -4 ns "-" 0

- ZI-_Z_Z_Z IZZ T;7T7

ko=  915Q5Ksi = 0.345
nl = 1.158 n_= O.

n5 = 0 n6= 0

ng--_ 0

To carry out the incremental analysis, the entire load cycle is divided into

50 time steps with variable step sizes within the four quarters of the load cy-

cle. Solution was obtained by using four different integration schemes: the

asymptotic algorithm, the trapezoidal rule with Newton-Raphson iterations,

the forward Euler and Runge-Kutta procedures with error checks [3,9,12,18].

The resulting hoop stresses are plotted in figs.(3) and (4). As seen in the

plots, no visible difference can be detected among the numerical results ob-

tained by the different integration schemes.

The CPU time for each of the integration schemes is listed in Table 1. It

appears that both the Runge-Kutta me_h0 _ and the asymp(o_ic algorithm

consume about 20% less CPU time than the implicit schemes. The Euler

method seems to be the most time-consuming algorithm in order to achieve

the same degree of solution accuracy.

5.2 A Simply Supported Beam

The second example isa simply-supported beam under a stateof plane stress.

The loading function isa full-cycledisplacement prescribed at the center of

the beam. The finiteclement model and the applied load function are plot-

ted in fig.(5).For thisproblem, Robinson's isotropicmodel isemployed. As

noted before,Robinson's model contains mathematical discontinuitieswhich

16



may pose numerical diffculty during the course of integrating the constitu-

tive equations. We use this problem to illustrate how numerical difficulty

may arise as a result of discontinuities existing in the constitutive equations.

To remove such difficulty, we need to monitor the variation of the Jacobian

matrix so that its norm must be kept within a certain allowable tolerance.

Otherwise, numerical anomaly will occur, which in turn causes either erro-

neous or non-unique solutions.

The material constants used for this example are[10]:

T = 1000.4F E =22,480Ksi kr =0.82Ksi v =0.345

n =4 r =3.61.!07 m -7.73 _ =1.5

R - 9 • 10 -s H = 1.37 • 10 4 Go = 0.1

W1 = 0.1 W2 = 0.1

Regions of Numerical Difficulties - When solving the beam problem using

Robinson's model with the asymptotic algorithm, oscillations in the numeri-

ca] solution were detected. There are in fact two different types of numerical

oscillations: case 1) ]1311 >_ 1, and case 2) I]JII _ 0. The first case occurs

when the rate of change of the state variables is very rapid (or high rates are

encountered), thus the corresponding constitutive rate equations are in a stiff

regime. The second case represents another extreme; that is, the material

is almost responding elastically with very little inelastic deformation. Thus,

solution of (26) leads to numerical drifting.

To further illustrate the numerical phenomenon stated above, we have

plotted in fig.(6) the bending stress vs. the back stress at an integration point

near the upper fiber near the center of the beam. As seen in the figure, the

back stress is changing much faster then the corresponding stress component,

thus leading to singularity of the coefficient matrix in (26). This phenomenon

is further verified from the plots of the Jacobian norm vs. the number of

local iterations at the integration point in fig.(7). The end result is that a

considerable amount of CPU time is consumed for very little improvement

in solution accuracy. In fig.(8), the dots close to the abscissa represent the

drifting of the Jacobian matrix. To alleviate such difficulty, we take an

average value of AX in (40) evaluated between two successive iterations. By

doing this, the numerical drift was immediately elimianated.

To stabilize the numerical oscillation of the first case, a step control pro-

cedure was implemented that checks the magnitude of Jacoblan norm. When
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the norm of the coefficient matrix in (40), [[I- J[[ is kept within a tolerance

limit, oscilations in the numerical solution of (26) are dramatically reduced

to relatively stable values as indicated in figs.(9). It shows a reduction in

the Jacobian norm when the integration steps are limited within a reason-

able value. As a result, the integration algorithm yields a unique convergent

solution ..................

The same problem was also analyzed for the trapezoidal rule and Runge-

Kutta method with error control [17]. In the case of trapezoidal rule, a

constant _ed-step history was employed, whereas an adaptive step proce-

dure was activated in the case of asymptotic algorithm. The trapezoidal rule

failed to yield a convergent solution in the critical discontinuity region as

indicated in flg.(10). On the other hand, the solutions obtained from the

asymptotic algorithm and the Runge-Kutta method converged quite nicely,

since both methods have a built-in step control.

The CPU time for the three integration methods is det_iied in Table (2).

The time required by the asymptotic algorithm is about 50% less than that

of the trapezoidal rule. For a larger size problem, the time saving will be

much more significant.

5.3 A Cylindrical Thrust Chamber

The third example is a cross section of a cylindrical rocket thrust chamber

which is subjected to thermal as wall as pressure cycling [19]. Due to the

repetitous pattern of its cross section, only one sector including the coding

channel is considered for finite dement analysis, fig. (11). In addition to

the thermal loading, the chamber is subjected to a time dependent internal

pressure; pl(t) acting on the cooling channel surface, and P2(t) acting on

its inner surface. The temperature and pressure functions Pl and p2 follow

the same time history and the corresponding function for one typical loading

cycle is shown in fig.(12). The sector of the chamber is modeled by 34 8-node

plane strain dements, fig.(12). The chamber material is assumed to follow

Robinson's isotropic model with the same material constants as were used

for the beam. In the finite element analysis, both the asymptotic algorithm

and trapezoidal rule were used for comparison of solution efficiency.

Shown in flg.(13)is the deformed shape of the thrust chamber cross section

at the end of one loading cycle. From the analysis, considerable inelastic

strain accumulations occurred at the inner corner of the cooling channel,
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which in turn caused bowing effect near the central section. This is called

the "dog house" effect and it is observed in experiments [20]. Also shown in

fig.(14) is the maximum inelastic strain history that occurred at the corner

of the cooling channel.

We use this problem to compare the solution efficiency between the asymp-

totic algorithm and trapezoidal rule. To this end, we employ two different

step histories: 1) a constant step history for both methods as a basis of com-

parison, and 2) a variable step history with step control for the asymptotic

algorithm. After several trials, it was found that 1000 constant, global, time

step increments were needed to obtain a convergent solution for the trape-

zoidal integration rule. Table (3) summarizes the CPU time ratios between

the two methods. The CPU time ratio per iteration is defined as

CPURatio =
CPU time using trapezoidal rule

CPU time using asymptotic algorithm

As seen in the table, the ratios vary somewhat during the course of the

analysis, i.e. within the range of 1 - 5. It is pointed out that the asymptotic

algorithm is particularly efficient when the rate of change of the state vari-

ables becomes large. In addition to the const'ant_step history, we employed

the asymptotic algorithm with an adaptive step control. In this case, the

method becomes even more attractive since it requires only about one-fourth

of the CPU time consumed by the trapezoidal method.

6 Conclusion

Two state variable-based viscoplastic models, namely Walker's and Robin-

son's models, have been implemented into a general purpose finite element

code for structural applications of metals deformed at elevated temperatures.

These models are represented in a material module form so that they may be

easily modified or transplanted to other finite element codes. The addition

of new viscoplastic models or integration routines is relatively transparent

to an investigator. A comparative study has been made on the numerical

performance of two implicit integration methods: the trapezoidal rule and

the asymptotic algorithm. It was found that the asymptotic algorithm be-

comes very effective if a self adaptive scheme based on an error check of the
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Jacobian matrix and subincremental step control is utilized at the material's

integration points, _ ....
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Table 1: CPU Ratio of a Thick Walled Cylinder

( Walker's Model )

Explicit Implicit[ Forward
....Runge Kutta trap. . Euler

Cal.of I
Nonlin. 1.168 1.137 1.7

Mat.
i

Table 2: CPU Ratio of a Simply Supported Beam

( Robinson's Model )

Explicit t Explicit Implicit

Runge-Kutta [ Runge-Kutta Trap.25 steps .50 steps

I Cal.of no
Nonlin. 1.8 2.5 convergence

Mat.

Table 3: CPU Ratio of g'Th:_ust Chamber

( Robinson's Modet )

Step

Range

CPU

Ratio

1-2

3- 200

201- 400

401- 600

601- 800

801-1000

5

1

2

2.5

2

3

24



_l_in _,laterial

Driver

[

Subincrementa/

Time Control

I
Nu_merical

Algoritkm

Control

Viscoplastic

Model Control

i
Evaluation of

Jacobiaa Matrix
I I
L. !

_

I
List of

Viscoplastic

Models
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